Quantcast
Channel: caudal – Sauropod Vertebra Picture of the Week
Viewing all 76 articles
Browse latest View live

I choose Haplocanthosaurus

$
0
0

snowmass-haplocanthosaurus-caudals

Oh man, 2016, you are really working on my nerves.

Sometimes it’s a positive balm to hold a piece of an animal dead and gone for 145 million years, or stare at a thousand vertical feet of sandstone, and know that we are all ants.

These lovelies here intrigue me deeply. They’re the three caudal vertebrae recovered from the Snowmass Haplocanthosaurus that John Foster and I described a couple of years ago. Pretty sure I’ll have more to say about them in the future. For now it’s enough that they’ve come across such a vast gulf of time and given this stressed-out primate a little perspective.

Reference

Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144



Sauropod neural canals are weird, part 1: when the neural arch, um, isn’t one

$
0
0

Here’s a dorsal vertebra of Camarasaurus in anterior view (from Ostrom & McIntosh 1966, modified by Wilson & Sereno 1998). It is one of the most disturbing things I have ever seen in a sauropod. It makes my skin crawl.

Here’s why: the centrum and the thing we habitually call the ‘neural arch’ aren’t fully fused, and as this modified version makes clear, the ‘neural arch’ is neither neural nor an arch. Instead of being bounded ventrally by the centrum and dorsally and laterally by the neural arch, the neural canal lies entirely below the synchondrosis between the not-really-an-arch and the centrum.

Why?! WHY WOULD YOU DO THAT, CAMARASAURUS? This is not ‘Nam. This is basic vertebral architecture. There are rules.

Look at c6 of Apatosaurus CM 555 here, behaving as all good vertebrae ought to. Neural arch be archin’, as the kids say.

And if you are seeking solace in the thought that maybe the artist just drew that Cam dorsal incorrectly, forget it. I’ve been to Yale and examined the original specimen. I’ve seen things, man!

Camarasaurus isn’t the only pervert around here. Check this out:

Unfused neural arch of a caudal vertebra of a juvenile Alamosaurus from Big Bend. And I mean, this is a neural arch. This may be the most neural of all neural arches, in that it contains the entire neural canal. It’s more of a neural…ring, I guess. That’s right, this Alamosaurus caudal is batting for the opposite team from the Cam dorsal above. And it’s a team that neither you nor I play on, because we have well-behaved normal-ass vertebrae with neural arches that actually arch, and then stop, like God and Richard Owen intended.

Scientifically, my question about these vertebrae is: well, that is, I mean to say, what!? I think they have damaged me in some fundamental way.

If you have anything more intelligent to add (or even less intelligent – consider the gauntlet thrown down!), the comment thread is open.

References

  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.
  • Wilson, J. A. and Paul C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology, Memoir 5: 1-68.

Sauropod neural canals are weird, part 1b: more offset neural arch joints

$
0
0

In the first installment in this series (link), we looked at a couple of weird sauropod vertebrae with neurocentral joints that were situated either entirely dorsal or ventral to the neural canals. This post has more examples of what I am calling “offset” neurocentral synchondroses.

I decided it made more sense to refer to the synchondrosis as being offset, instead of referring to the neural canal as offset. Because the neural canal in all of these vertebrae is right where it pretty much always is, just dorsal to the articular surfaces of the centrum. In an adult, fused vertebra, there’d be no sign that anything unusual had ever happened. So I think it makes more sense to talk about the neurocentral joint having migrated dorsally or ventrally relative to the canal, rather than vice versa. If you know differently, or if these weirdos have been addressed before elsewhere and I’ve just missed it, please let me know in the comments!

Here’s a plate from Marsh (1896) showing caudal vertebrae of Camarasaurus (“Morosaurus” in O.C. Marsh parlance), which echo the Alamosaurus caudal from the first post in having the neurocentral joint almost entirely ventral to the neural canal. The neural arch here doesn’t just arch over the canal dorsally, it also cuts under it ventrally, at least in part.

This plate is also nice because it shows the relationships among the arch, centrum, and caudal ribs before they fuse. Here’s the caption, from Marsh (1896):

Here’s the preceding plate, Plate 33, with illustrations of an unfused Camarasaurus sacrum.

And its caption:

This plate not only shows how the sacral ribs fuse to the arch and spine medially, and to each other laterally (forming the sacrocostal yoke), it also shows a last sacral that is very similar to the aforementioned caudals in the position of the neurocentral joint. But interestingly that neurocentral joint offset only seems to be present in the last caudal sacral – the lower figure shows widely-separated neurocentral joint surfaces in the more anterior centra, indicating that the neural arches (not figured in this dorsal view) did not wrap around the neural canal to approach the midline. (I think we’re looking at S2 through S5 here, and missing a dorso-sacral.)

So now I’m freaked out, wondering if this neural arch wrap-around in the caudals is common to most sauropods and I just haven’t looked at enough juvenile caudals to have spotted it before. As always, feel free to ablate my ignorance in the comments, particularly if you know of more published examples. I’m a collector.

The neural canal of that last sacral also has a very interesting cross-sectional shape, like a numeral 8. I have some thoughts on that, but they’ll keep for a future post in this series.

OMNH 1331, another big apatosaurine caudal

$
0
0

Here’s another vertebra from the big Oklahoma apatosaurine. Based on the size and shape of the transverse process, and the large pneumatic chambers on either side of the neural canal, I think this is probably a 4th caudal, but it could plausibly be a 3rd or a 5th. The centrum is 33 cm tall by 36 cm wide.

For other elements of the big Oklahoma apatosaurine, please see:

The pneumatic tail of the Field Museum apatosaurine, FMNH P25112

$
0
0

Left side, posterolateral oblique view, wide shot.

Same thing, close up.

Right side, lateral, wide.

Same thing, close up.

For more on this and other pneumatic sauropod tails, please see Wedel and Taylor (2013, here). And for more on the currently unresolved taxonomic status of FMNH P25112, see this post.

In quest of monsters – last week’s Utah adventure

$
0
0

Last Wednesday, May 9, Brian Engh and I bombed out to Utah for a few days of paleo adventures. Here are some highlights from our trip.

We started at a Triassic tracksite on Thursday. But I’m not going to post any pictures of the tracks – those will be coming to a Brian Engh joint near you in the future. Instead, I’m going to talk about this little male collared lizard whose territory included the tracksite. He was fearless – didn’t want to run off and leave us yahoos wandering around his patch of desert unsupervised. Brian tickled his chin at one point.

Getting this close to him is how I got shots like this one:

Click through to the big version, it’s worth it.

One more shot of a couple of cool desert dwellers. I was so fixated on the lizard that I didn’t realize until later that Brian was in the frame, taking a much-needed hydration break.

On Friday we had a temporary breaking of the fellowship. I went to Fruita, Colorado, to visit the Dinosaur Journey museum. You’ve seen photos from DJ here before, from the 2014 Mid-Mesozoic Field Conference and the 2016 Sauropocalypse. Here’s an apatosaur pubis with some obvious bite marks on the distal end. This is on display next to a similarly-bitten ischium, which is shown in the MMFC14 post linked above.

Here’s a big apatosaur cervical, in antero-ventral view, with a dorsal rib draped over its left side. The cervical ribs are not fused in this specimen, so it was probably still growing. Here’s a labeled version:

The short centrum and nearly-vertical transverse processes indicate that this is a pretty posterior cervical, possibly a C13 or thereabouts. This specimen was over the fence in the exhibit area and I couldn’t throw a scale bar at it, but I’d describe it as “honkin'”. Like most of the apatosaur material at DJ, this vert is from the Mygatt-Moore Quarry.

Of course the real reason I was at Dinosaur Journey was to see the Snowmass Haplocanthosaurus that John Foster and I described back in 2014. You may remember that its caudal vertebrae have wacky neural canals. You may also have noticed a recent uptick in the number of posts around here about wacky neural canals. The game is afoot.

But as cool as they were, the Triassic tracks, the collared lizard, and even the Snowmass Haplo were only targets of opportunity. Brian and I had gone to Utah for this:

That photo was taken by Paige Wiren of Salt Lake City, on the day that she discovered that bone eroding out of a riverbank, just as you see it.

Here’s Paige with the element, which proved to be the left femur of an apatosaurine sauropod. It’s face down in these photos, so we’re looking at the medial side. The articular head is missing from the proximal end – it should be facing toward Paige’s right knee in the above photo – but other than that and a few negligible nicks and dings, the femur was complete and in really good shape.

Paige did the right thing when she found the femur: she contacted a paleontologist. Specifically, she asked a friend, who in turn put her in touch with Carrie Levitt-Bussian, the paleontology Collections Manager at the Natural History Museum of Utah. Based on Paige’s photos and maps, Carrie was able to identify the element as a dinosaur femur, probably sauropod, within the territory of the BLM Hanksville Field Office. John Foster, the Director of the Museum of Moab, has a permit to legally collect vertebrate fossils from that area, and he works on sauropods, so Carrie put Paige in touch with John and with ReBecca Hunt-Foster, the district paleontologist for the BLM’s Canyon Country District in Utah.

Now, I know there’s a lot of heated rhetoric surrounding the Bureau of Land Management, but whatever your political bent, remember this: those are our public lands. Therefore the fossils out there are the collective property of all of us, and we should all be upset if they get poached or vandalized. Yes, that is a big problem – the Brontomerus type quarry was partially poached before the bones we have now were recovered, and vandalism at public fossil sites in Utah made the national news while we were out there.

So that’s what we went to do: salvage this bone for science and education before it could be lost to erosion or asshats. Brian and I were out there to assist John, ReBecca, and Paige, who got to see her find come out of the ground and even got her hands dirty making the plaster jacket. Brian and John headed out to the site Friday morning and met up with Paige there, and ReBecca and I caravanned out later in the day, after I got back from Fruita.

But I’m getting ahead of myself a bit. We didn’t have to jacket the whole thing. It had naturally broken into three pieces, with thin clay infills at the breaks. So we just slid the proximal and middle thirds away as we uncovered them, and hit any loose-looking pieces with consolidant. The distal third was in more questionable shape, so we did make a partial jacket to hold it together.

We also got to camp out in gorgeous country, with spectacular (and welcome) clouds during the day and incredible starry skies at night.

We floated the femur out of the site using the Fosters’ canoe at the end of the day on Saturday, and loaded up to head back to Moab on Sunday. At one point the road was empty and the sky was not, so I stood on the center line and took some photos. This one is looking ahead, toward I-70 and Green River.

And this one is looking behind, back toward Hanksville.

Here are John and Brian with the femur chunks in one of the back rooms of the Museum of Moab. The femur looks oddly small here, but assembled it was 155 cm (5’1″) long and would have been 160 (5’3″) or more with the proximal head. Smaller than CM 3018 and most of the big mounted apatosaurs, but nothing to sneeze at.

What happens to it next? It will be cleaned, prepped, and reassembled by the volunteers and exhibit staff at the Museum of Moab, and eventually it will go on public display. Thousands of people will get to see and learn from this specimen because Paige Wiren made the right call. Go thou and do likewise.

That was the end of the road for the femur (for now), but not for Brian and me. We had business in Cedar City and St. George, so we hit the road Sunday afternoon. Waves of rainclouds were rolling east across Utah while we were rolling west, with breaks for sunlight in between. I miiiight have had to swerve a couple of times when all the scenery distracted me from driving, and I definitely made an obnoxious number of stops to take pictures.

I don’t remember which scenic overlook this was, but it was a pretty darned good view. This is another one that will reward embiggening – check out those mesas marching off into the distance.

In Cedar City we were guests of Andrew R.C. Milner, Site Paleontologist and Curator at the St. George Dinosaur Discovery Site at Johnson Farm (SGDS). We spent most of Monday at SGDS, getting our minds comprehensively blown by the amazing trace and body fossils on display. It was my first time visiting that museum, but it sure as heck won’t be the last.

I didn’t take nearly enough photos in St. George – too busy helping Brian do some filming for a future project – but I did get this gem. This is a Eubrontes track, from a Dilophosaurus-sized theropod. This is a positive track, a cast of the dinosaur’s foot made by sandy sediment that filled the natural mold formed when the dino stepped into mud. The high clay content of the mud recorded the morphology of the foot in fine detail, including the bumps of individual scales on the foot pads. The vertical streaks were cut into the side of the track by similar scales as the animal’s foot pushed into the mud.

The full story of the Johnson Farm tracks and trackmakers is beautifully told in the book Tracks in Deep Time: The St. George Dinosaur Discovery Site at Johnson Farm, by Jerry Harris and Andrew Milner. I hadn’t read it before, so I picked up a copy in the gift shop and I’ve been devouring it. As a professional scientist, educator, and book author myself, I’m jealous of what Jerry and Andrew produced – both the text and the abundant full-color illustrations are wonderfully clear, and the book is well-produced and very affordable.

From St. George we hit the road home, and rolled into Claremont just before midnight on Monday. It was a whirlwind tour – 1800 miles, three museums, and two fossil sites in six days – and my brain is still fizzing with all of the things we got to see and do.

One of the many pros of having a professional artist as a friend is that minimal hospitality, like letting him crash on my couch, is sometimes rewarded with original art. Brian was already gone when I got up Tuesday morning, but this was waiting for me on the dining room table. (Want your own? Help Brian make more monsters here.)

I owe plenty of thanks myself: to the Foster and Milner families for their near-maximal hospitality, to Julia McHugh of Dinosaur Journey for assistance in collections, to Diana Azevedo, Jalessa Spor, Jerry Harris, and the rest of the SGDS staff for being such gracious hosts, to Brian for being such a great friend and traveling companion, and most of all to Paige Wiren for finding the apato femur and helping us save it for science. You’re all top-notch human beings and I hope our paths cross again soon.

Back in business

$
0
0

Many thanks to all of the good folks in the radiology department at the Hemet Valley Medical Center, especially John Yasmer, DO, my partner in crime, and Heather Salzwedel, who did all of the actual work of scanning while the rest of us stood around making oooh and aaah noises.

Further bulletins as events warrant.

Haplocanthosaurus goes digital

$
0
0

The most complete caudal vertebra of the Snowmass Haplocanthosaurus (Foster and Wedel 2014) in right lateral view: specimen photo, CT scout, 3D model, 3D print at 50% scale. The photos of the specimen and the 3D print probably match the worst with the others, because they are subject to perspective distortions that the digital reconstructions are free from.

Here’s one nice thing about having a 3D print of a specimen that you’re working on: you can hand it to other anatomists and paleontologists and get their take on its weird features, and it’s small enough and light enough that you can bring it halfway across the country to show in person to an entirely different set of colleagues. For all that we hear about humans being a visual species, we are also a tactile one, and in my admittedly limited experience, grokking morphology by handling 3D printed fossils is almost as good as – and for big, heavy, fragile sauropod vertebrae, sometimes better than – handling the real thing.

Many thanks to Julia McHugh at Dinosaur Journey for access to the specimen, John Yasmer at the Hemet Valley Medical Center for CT scanning, Thierra Nalley at Western University of Health Sciences for help with segmenting and visualization in Amira, and Gary Wisser, WesternU’s 3D visualization specialist, for the sweet print. Further bulletins as events warrant.

Reference

Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144


Proximal caudals of Haplocanthosaurus, from Hatcher (1903)

$
0
0

Caudal vertebrae of Haplocanthosaurus priscus (formerly H. utterbacki) CM 879 in right lateral view, from Hatcher (1903: plate 2).

You know how you’ll be doing an image search for some vertebrate fossil and you’ll get a page full of SV-POW! stuff and you’ll think, “Dammit, how is it that those lazy SV-POW!sketeers haven’t gotten around to posting just straight-up scans of the plates from all of the classic sauropod monographs?”

Proximal caudal vertebrae of Haplocanthosaurus priscus CM 572 in right lateral (top), anterior (middle), and posterior (bottom) views, from Hatcher (1903: plate 3).

Well, as of now, we’re working on it. Probably highly irregularly, entirely dependent on what we need for whatever has caught our attention, and with no definite progress markers or endpoint, but still. Here are the proximal caudals of Haplocanthosaurus. Go nuts, future self.

Reference

  • Hatcher, J.B. 1903. Osteology of Haplocanthosaurus with description of a new species, and remarks on the probable habits of the Sauropoda and the age and origin of the Atlantosaurus beds; additional remarks on Diplodocus. Memoirs of the Carnegie Museum 2:1-75.

The camarasaur that was more than it seeemed

$
0
0

This is SUSA 515, a partial skeleton of Camarasaurus on display in the Museum of Moab. (SUSA stands for Southeastern Utah Society of Arts & Sciences.) It was described by John Foster in 2005.

I like this thing. The neural spines are blown off so you can see right down into the big pneumatic cavities in the dorsal vertebrae. And unlike the plastered, painted, and retouched-to-seeming-perfection mounted skeletons in most museums, this specimen reflects how most sauropod specimens look when they come out of the ground. With a few dorsal centra, a roadkilled sacrum, and some surprisingly interesting caudals, it puts me strongly in mind of MWC 8028, the Snowmass Haplocanthosaurus (another John Foster joint: see Foster and Wedel 2014).

Frankly, it doesn’t look like much: 17 centra and some odd bits of pelvis. Surely, with so many good Camarasaurus specimens in the world, this one couldn’t possibly have anything new to tell us about the anatomy of that genus. And yet, it has a couple of unusual features that make it worthy of attention. My colleagues and I are working on those things right now, and you’ll be hearing more about this specimen in the very near future.

References

Another Utah trip, and Aquilops on display at Dinosaur Journey

$
0
0

I was back in Utah the week before last, looking for monsters with Brian Engh and Jessie Atterholt. It was a successful hunt – more about that another time.

We made a run to Fruita, Colorado, to visit Dinosaur Journey. I was just there in May, picking up Haplocanthosaurus caudals for CT scanning (and other fun things). We picked up another specimen this time, for a different project – more on that in another post, too.

Not this one, but like this one. An apatosaurine middle caudal vertebra, MWC 5742, in left lateral view.

There’s a nice ceratopsian exhibit up at Dinosaur Journey right now, with cast skulls from many of the new ceratopsians that have been described in the past couple of decades. My near-favorites were Zuniceratops and Diabloceratops, both of which are small enough that they must have been adorable in life (think pony-sized and big-horse-sized, respectively).

My absolute favorite, of course, was this little thing:

I can tell you exactly how Aquilops came to be on display there. Julia McHugh printed a copy of the holotype, because it’s freely available to the world. And she used Brian’s Aquilops head recon in the signage (correctly, with attribution), because it’s also freely available to the world. In fact, I’ve seen Aquilops on display at several museums now for just those reasons. So, folks, if you want your critters to be seen, make them open. Hiring a paleoartist to do some awesome artwork that can be released under a CC-BY license (because you paid them, not because you asked them to give their art away for “exposure”) is a huge help.

We had to geek out a little about unexpectedly finding ‘our’ dinosaur on display:

But of course it is not our dinosaur anymore – that’s the whole point. Aquilops belongs to the world.

For more on our trip, see Jessie’s posts herehere, and here.

First caudal vertebrae of the various Haplocanthosaurus specimens

$
0
0

CM 879 caudal 1 in anterior view

Here’s caudal 1 in Haplocanthosaurus priscus, CM 879. Hatcher (1903) only illustrated this vert in right lateral view, in a drawing by Sydney Prentice (see this post). I showed the vert in left lateral, right lateral, and dorsal views in my 2009 air sac paper (figs. 7 and 9, here). As far as I know, no-one has ever illustrated this vert in anterior or posterior view before.

CM 879 caudal 1 in posterior view

That’s a shame, because it’s the only first caudal of Haplocanthosaurus with a combination of good preservation and accessibility. The first caudal of the holotype, CM 572, was pretty wrecked and the drawings of it in Hatcher (1903) are largely reconstructions (this is discussed in McIntosh and Williams 1988). H. delfsi, CMNH 10380, has a nice caudal 1 but it’s stuck way up in the air in the mounted skeleton in Cleveland. The Snowmass Haplo, MWC 8028, includes a probable first caudal but it’s not going to win any beauty contests:

MWC 8028 probable caudal 1 in anterior (left), posterior (middle), and right lateral (right) views. From Foster and Wedel (2014: fig. 5).

Oh, and there’s the Bilbey haplocanthosaur on display at the Utah Field House of Natural History State Park Museum in Vernal. It has a very nice caudal sequence, probably the best for any haplocanthosaur, but (1) the specimen is under study by others so I don’t want to say too much about it, and (2) I couldn’t if I wanted to because the caudals are displayed in such a way that only the centra are easily visible.

I intended to talk a bit about the morphology of the first caudal in CM 879 and the other Haplo specimens, but now I’m out of time, so I’ll have to circle back to that in the future.

References

The Haplo project enjoys a brief interlude in realspace

$
0
0

Preserved bits of the Snowmass Haplocanthosaurus, MWC 8028, with me for scale. Modified from Wedel (2009: fig. 10), but not much – MWC 8028 was about the same size as CM 879.

Let’s say you had a critter with weird neural canals and super-deeply-dished-in centrum-ends, and you wanted to digitally rearticulate the vertebrae and reconstruct the spinal cord and intervertebral cartilages, in a project that would bring together a bunch of arcane stuff that you’d been noodling about for years. Your process might include an imposing number of steps, and help from a LOT of people along the way:

1. Drive to Dinosaur Journey in Fruita, Colorado, to pick up the fossils and bring them back to SoCal. (Thank you Paige Wiren, John Foster, and Rebecca Hunt-Foster for an excuse to come to the Moab area, thank you Brian Engh for the awesome road trip, and thank you Julia McHugh for access to specimens and help packing them up!).

2. Take the fossils to the Hemet Valley Medical Center for CT scanning. (Thank you John Yasmer and team.)

3. Find a colleague who would help you generate 3D models from the CT scans. (Thank you Thierra Nalley.)

4. Talk it over with your university’s 3D vizualization team, who suggest a cunning plan: (Thank you Gary Wisser, Jeff Macalino, and Sunami Chun at WesternU.)

5. They print the best-preserved vertebra at 75% scale. (50% scale resin print shown here.)

6. You and a collaborator physically sculpt in the missing bits with some Super Sculpey. (Thank you Jessie Atterholt for sculpting, and thank you Jeremiah Scott for documenting the process.)

(7.) The 3D-viz team use their fancy optical scanner (basically a photogrammetry machine) to make:

  • a second-generation digital model (digital)
  • from the sculpted-over 3D print (physical)
  • of the first-generation digital model (digital)
  • made from the CT scans (digital)
  • of the original fossil material (physical).

(8.) With some copying, pasting, and retro-deforming, use that model of the restored vert as a template for restoring the rest of the vertebrae, stretching, mirroring, and otherwise hole-filling as needed. (Prelim 2D hand-drawn version of caudal 1 shown here.)

(9.) Test-articulate the restored vertebrae to see if and how they fit, and revise the models as necessary. (Low-fi speculative 2D version from January shown here.)

(10.) Once the model vertebrae are digitally rearticulated, model the negative spaces between the centra and inside the neural canals to reconstruct the intervertebral cartilages and spinal cord.

(11.) Push the university’s 3D printers to the limit attempting to fabricate an articulated vertebral series complete with cartilages and cord in different colors and possibly different materials, thereby making a third-generation physical object that embodies the original idea you had back in January.

(12.) Report your findings, publish the CT scans and 3D models (original and restored), let the world replicate or repudiate your results. And maaaybe: be mildly astonished if people care about the weird butt of the most-roadkilled specimen of the small obscure sauropod that has somehow become your regular dance partner.

We did number 6 yesterday, so just counting the arbitrarily-numbered steps (and ignoring the fact that 7-12 get progressively more complicated and time-consuming), we’re halfway done. Yay! I’ll keep you posted on how it goes from here.

Caudal vertebrae of Haplocanthosaurus delfsi

$
0
0

Tired of Haplo caudals yet? No? Good – me neither. Not by a long shot.

Above is McIntosh and Williams (1988: fig. 10) showing the rearticulated and partially reconstructed tail of CMNH 10380, the holotype and only known specimen of Haplocanthosaurus delfsi, in right anterolateral oblique view. It’s not an original, I plucked it from a PDF scan of the paper. Probably an original reprint would be a lot more clear. In hopes of seeing more, I cropped out the background and tweaked the contrast:

The first 14 caudals are real, the rest are sculpted replicas. You can tell in the photo because the thickness of the supporting rods drops sharply between caudals 14 and 15. That’s not my original observation, McIntosh and Williams pointed it out.

Conclusion? It looks like a pretty good Haplo tail. The first caudal has big, plate-like caudal ribs, which grade rapidly into the normal laterally-projecting stumps in succeeding vertebrae. Caudal 1 also has a distinctly tall, backwardly-curved neural spine, which grades into shorter, straighter spines very rapidly as well. It’s as if the first caudal is built on a typical diplodocoid plan, but the rest are simple non-neosauropod or basal macronarian caudals and they have to switch over as quickly as possible. Both of those shifts happen in the first few caudals in the other Haplo tails, too, with some minor variation among specimens.

I’m sure I’ll have more to say about this specimen in the future, but I’m attending the Flugsaurier conference in LA this weekend so my head is in the clouds. Hope you’re having half as much fun.

Reference

  • McIntosh, J.S., and Williams, M. E. 1988. A new species of sauropod dinosaur, Haplocanthosaurus delfsi sp. nov., form the Upper Jurassic Morrison Fm. of Colorado. Kirtlandia 43:3-26.

CT scanning a caudal vertebra of Diplodocus

$
0
0

John Yasmer, DO (right) and me getting ready to scan MWC 8239, a caudal vertebra of Diplodocus on loan from Dinosaur Journey, at Hemet Valley Imaging yesterday.

Alignment lasers – it’s always fun watching them flow over the bone as a specimen slides through the tube (for alignment purposes, obviously, not scanning – nobody’s in the room for that).

Lateral scout. I wonder, who will be the first to correctly identify the genus and species of the two stinkin’ mammals trailing the Diplo caudal?

A model we generated at the imaging center. This is just a cell phone photo of a single window on a big monitor. The actual model is much better, but I am in a brief temporal lacuna where I can’t screenshot it.

What am I doing with this thing? All will be revealed soon.


Diplodocus goes digital

$
0
0

No time for a proper post, so here’s a screenshot from Amira of Diplodocus caudal MWC 8239 (the one you saw being CT scanned last post) about to be digitally hemisected. Trust me, you’ll want to click through for the big version. Many thanks to Thierra Nalley for the Amira help.

Further bulletins as time and opportunity allow.

What does it mean for a vertebra to be “horizontal”?

$
0
0

I was lucky enough to have Phil Mannion as one of the peer-reviewers for my recent paper (Taylor 2018) showing that Xenoposeidon is a rebbachisaurid. During that process, we got into a collegial disagreement about one of the autapomorphies that I proposed in the revised diagnosis: “Neural arch slopes anteriorly 30°–35° relative to the vertical”. (This same character was also in the original Xenoposeidon paper (Taylor and Naish 2007), in the slightly more assertive form “neural arch slopes anteriorly 35 degrees relative to the vertical”: the softening to “30°–35°” in the newer paper was one of the outcomes of the peer-review.)

The reason this is interesting is because the slope of the neural arch is measured relative to the vertical, which of course is 90˚ from the horizontal — but Phil’s comments (Mannion 2018) pushed me to ask myself for the first time: what actually is “horizontal”? We all assume we know horizontality when we see it, but what precisely do we mean by it?

Three notions of “horizontal”

The idiosyncratic best-preserved caudal vertebra of the Snowmass Haplocanthosaurus MWC 8028, illustrating three different versions of “horizontal”. A. horizontality defined by vertical orientation of the posterior articular surface. B. horizontality defined by horizontal orientation of the roof of the neural canal (in this case, rotated 24˚ clockwise relative to A). b horizontality defined by optimal articulation of two instances of the vertebra, oriented such the a line joining the same point of both instances is horizontal (in this case, rotated 17˚ clockwise relative to A). Red lines indicate exact orthogonality according to the specified criteria. Green line indicate similar but diverging orientations: that of the not-quite-vertical anterior articular surface (A) and of the not-quite-horizontal base of the neural canal (B).

There are at least three candidate definitions, which we can see yield noticeably different orientations in the case of the Snowmass Haplocanthosaurus vertebra that Matt’s been playing with so much recently.

Definition A: articular surfaces vertical

In part A, I show maybe the simplest — or, at least, the one that is easiest to establish for most vertebrae. So long as you have a reasonably intact articular surface, just rotate the vertebra until that surface is vertical. If, as is often the case, the surface is not flat but concave or convex, then ensure the top and bottom of the surface are vertically aligned. This has the advantage of being easy to do — it’s what I did with Xenoposeidon — but it conceals complexities. Most obviously, what to do when the anterior and posterior articular surfaces are not parallel, in the 7th cervical vertebra of a giraffe?

Cervical vertebra 7 of Giraffa camelopardalis FMNH 34426, in left lateral view. Note that the centrum is heavily “keystoned” so that the anterior and posterior articular surfaces are 15-20˚ away from being parallel.

Another difficulty with this interpretation of horizontality is that it can make the neural canal jagged. Consider a sequence of vertebrae oriented as in part A, all at the same height: the neural canal would rise upwards along the length of each vertebra, before plunging down again on transitioning from the front of one to the back of the next. This is not something we would expect to see in a living animal: see for example the straight line of the neural canal in our hemisected horse head(*).

Definition B: neural canal horizontal

Which leads us to the second part of the illustration above. This time, the vertebra is oriented so that the roof of the neural canal is horizontal, which gives us a straight neural canal. Nice and simple, except …

Well, how do we define what’s horizontal for the neural canal? As the Haplocanthosaurus vertebra shows nicely, the canal is not always a nice, neat tube. In this vertebra, the floor is nowhere near straight, but dishes down deeply — which is why I used to the roof, rather than the floor of the canal. Rather arbitrary, I admit — especially as it’s often easier to locate the floor of the canal, as the anterior margin is often confluent with fossae anteriorly, posteriorly or both.

And as we can see, it makes a difference which we choose. The green line in Part B of the illustration above shows the closest thing to “horizontal” as it would be defined by the ventral margin of the neural canal — a straight line ignoring the depression and joining the anteriormost and posteriormost parts of the base of the canal. As you can see, it’s at a significantly different angle from the red line — about 6.5˚ out.

And then you have human vertebrae, where the dorsal margin of the neural canal is so convex in lateral view that you really can’t say where the anteriormost or posteriormost point is.

Left sides of hemisected human thoracic vertebrae, medial view. Note how ill-defined the dorsal margin of the neural canal is.

So can we do better? Can we find a definition of “horizontal” that’s not dependent of over-interpreting a single part of the vertebra?

Definition C: same points at same height in consecutive vertebrae

I’ve come to prefer a definition of horizontal that uses the whole vertebra — partly in the hope that it’s less vulnerable to yielding a distorted result when the vertebra is damaged. With this approach, shown in part C of the illustration above, we use two identical instances of the vertebrae, articulate them together as well as we can, then so orient them that the two vertebrae are level — that a line drawn between any point on one vertebra and its corresponding point on the other is horizontal. We can define that attitude of the vertebra as being horizontal.

Note that, while we use two “copies” of the vertebra in this method, we are nevertheless determining the horizontality of a single vertebra in isolation: we don’t need a sequence of consecutive vertebrae to have been preserved, in fact it doesn’t help if we do have them.

One practical advantage of this definition is that its unambiguous as regards what part of the vertebra is used: all of it; or any point on it, at the measurement stage. By contrast, method A requires us to choose whether to use the anterior or posterior articular surface, and method B requires a choice of the roof or floor of the neural canal.

Discussion

I have three questions, and would welcome any thoughts:

  1. Which of these definitions do you prefer, and why?
  2. Can you think of any other definitions that I missed?
  3. Does anyone know of any previous attempts to formalise this? Is it a solved problem, and Matt and I somehow missed it?

Answers in the comments, please!

References

(*) Yes, of course we have a hemisected horse head. What do you think we are, savages?

The proximal caudals of Brachiosaurus altithorax, FMNH P25107

$
0
0

Left lateral view

Have we ever posted decent photos of the Brachiosaurus altithorax caudals? Has anyone? I can’t remember either thing ever happening. When I need images of brachiosaur bits, including caudals, I usually go to Taylor (2009).

Taylor (2009: fig. 3)

Which is silly, not because Mike’s diagrams compiling old illustrations aren’t good – they definitely are – but because I’m sitting on a war chest of decent photos of the actual material. I am home sick with a sore throat today, and I can’t be arsed to (1) follow up on the “Down in Flames” post, (2) add anything thoughtful to the vertebral orientation discussion, or (3) crop or color-adjust these photos. You’re getting them just as they came out of my camera, from my trip to the Field Museum in 2012.

Here are the rest of the orthogonal views:

Right lateral view

 

Anterior view

 

Posterior view

 

Dorsal view of caudal 1

 

Dorsal view of caudal 2

And here’s a virtual walkaround using a series of oblique shots. Making a set like this is part of my standard practice now for important specimens during museum visits.

 

 

 

 

 

 

 

Now, I said up top that I wasn’t going to add anything thoughtful to the vertebral orientation discussion. I have thoughts on that, but I’m tired and hopped up on cold medicine and now ain’t the time. In lieu of blather, here are a couple of relevant photos.

 

I wanted to capture for my future self the pronounced non-orthogonality of the neural canal and centrum, so I rolled up a piece of paper and stuck it through the neural canal. I haven’t run the numbers, but in terms of “angle of the articular faces away from the neural canal”, these verts look like they’re right up there with my beloved Snowmass Haplocanthosaurus.

More on that next time, I reckon. In the meantime, all these photos are yours now (CC-BY, like everything on this site [that someone else hasn’t asserted copyright over]). Go have fun.

Reference

Vertebral orientation: Varanus komodoensis would like a word

$
0
0

I am still building up to a big post on vertebral orientation, but in the meantime, check out this caudal vertebra of a Komodo dragon, Varanus komodoensis. This is right lateral view–the vert is strongly procoelous, and the articular ends of the centrum are really tilted relative to the long axis. I find this encouraging, for two reasons. First, it helped me clarify my thinking on how we ought to orient vertebrae, which Mike wrote about here and here. And second, it gives me some hope, because if we can figure out why tilting your articular surfaces makes functional sense in extant critters like monitors, maybe we can apply those lessons to sauropods and other extinct animals.

This is LACM Herpetology specimen 121971. Many thanks again to Neftali Camacho for access and assistance, and to Jessie Atterholt for basically doing all the other jobs while I was faffing about with this Komodo dragon.

Vertebral orientation, part 3: Matt weighs in

$
0
0

WOW! I knew I was dragging a bit on getting around to this vertebral orientation problem, but I didn’t realize a whole month had passed. Yikes. Thanks to everyone who has commented so far, and thanks to Mike for getting the ball rolling on this. Previous posts in this series are here and here.

First up, this may seem like a pointlessly picky thing to even worry about. Can’t we just orient the vertebrae in whichever way feels the most natural, or is easiest? Do we have to think about this?

The alarmingly 3D pelvis of the mounted brontosaur at the AMNH. Note that sauropod pubes are usually illustrated lying flat, so what usually passes for ‘lateral’ view would be roughly from the point of view of the animal’s knee.

I think we do. For sauropods, vertebrae are usually oriented for illustration purposes in one of two ways. The first is however they sit most easily on their pallets. This is similar to the problem Mike and I found for ‘lateral’ views of sauropod pelvic elements when were on our AMNH/Yale trip in 2012. In an articulated skeleton, the pubes and ischia usually lean inward by 30-45 degrees from their articulations with the ilia, so they can meet on the midline, but when people illustrate the “lateral view” of a sauropod pubis or ischium, it’s often the ventro-lateral aspect that is face-up when the element is lying on a shelf or a pallet. Photographic lateral does not equal biological lateral for those elements. Similarly, if I’m trying to answer biological questions about vertebrae (see below), I need to know something about their orientation in the body, not just how they sit comfortably on a pallet.

The other way that vertebrae are commonly oriented is according to what we might call the “visual long axis” of the centrum—so for example, dorsoventrally tall but craniocaudally short proximal caudals get oriented with the centrum ‘upright’, whereas dorsoventrally short but craniocaudally long distal caudals get oriented with the centrum ‘horizontal’, even if they’re in the same tail and doing so makes the neural canals or articular faces be oriented inconsistently down the column. (I’m not going to name names, because it seems mean to pick on people for something I just started thinking about myself, but if you go plow through a bunch of sauropod descriptions, you’ll see what I’m talking about.)

Are there biological questions where this matters? You bet! There are some questions that we can’t answer unless we have the vertebrae correctly oriented first. One that comes to mind is measuring the cross-sectional area of the neural canal, which Emily Giffin did a lot of back in the 90s. Especially for the Snowmass Haplocanthosaurus, what counts as the cross-sectional area of the neural canal depends on whether we are looking at the verts orthogonal to their articular faces, or in alignment with the course of the canal. I think the latter is pretty obviously the way to go if we are measuring the cross-sectional area of the canal to try and infer the diameter of the spinal cord—we’d want to see the canal the same way the cord ‘sees’ it as it passes through—but it’s less obvious if we’re measuring, say, the surface area of the articular face of the vertebra to figure out, say, cartilage stress. It doesn’t seem unreasonable to me that we might want to define a ‘neural axis’ for dealing with spinal-cord-related questions, and a ‘biomechanical axis’ for dealing with articulation-related questions.

Caudal 3 of the Snowmass Haplocanthosaurus, hemisected 3D model.

With all that in mind, here are some points.

To me, asking “how do we know if a vertebra is horizontal” is an odd phrasing of the problem, because “horizontal” doesn’t have any biological meaning. I think it makes more sense to couch the question as, “how do we define cranial and caudal for a vertebra?” Normally both the articular surfaces and the neural canal are “aimed” head- and tail-wards, so the question doesn’t come up. Our question is, how do we deal with vertebrae for which the articular surfaces and neural canal give different answers?

For example. Varanus komodoensis caudal.

(And by the way, I’m totally fine using “anterior” and “posterior” for quadrupedal animals like sauropods. I don’t think it causes any confusion, any more than people are confused by “superior” and “inferior” for human vertebrae. But precisely because we’re angling for a universal solution here, I think using “cranial” and “caudal” makes the most sense, just this once. That said, when I made the image above, I used anterior and posterior, and I’m too lazy now to change it.)

I think if we couch the question as “how do we define cranial and caudal”, it sets up a different set of possible answers than Mike proposed in the first post in this series: (1) define cranial and caudal according to the neural canal, and then describe the articular surfaces as inclined or tilted relative to that axis; (2) vice versa—realizing that using the articular surfaces to define the anatomical directions may admit a range of possible solutions, which might resurrect some of the array of possible methods from our first-draft abstract; (3) define cranial and caudal along the long axis of the centrum, which is potentially different from either of the above; (4) we can imagine a range of other possibilities, like “use the zygs” or “make the transverse processes horizontal” (both of which are subsets of Mike’s method C) but I don’t think most of those other possibilities are sufficiently compelling to be worthy of lengthy discussion.

IF we accept “neural canal”, “articular surfaces”, and “centrum long axis” as our strongest contenders, I think it makes most sense to go with the neural canal, for several reasons:

  • In a causative sense, the neural tube/spinal cord does define the cranial/caudal axis for the developing skeleton.
  • The neural canal works equally well for isolated vertebrae and for articulated series. Regardless of how the vertebral column is oriented in life, the neural canal is relatively smooth—it may bend, but it doesn’t kink. So if we line up a series of vertebrae so that their neural canals are aligned, we’re probably pretty close to the actual alignment in life, even before we look at the articular surfaces or zygs.
  • The articulated tails of Opisthocoelicaudia and big varanids show that sometimes the articular surfaces simply are tilted to anything that we might reasonably consider to be the cranio-caudal axis or long axis of the vertebra. In those cases, the articular surfaces aren’t orthogonal to horizontal OR to cranio-caudal. So I think articular surfaces are ruled out because they break down in the kinds of edge cases that led us to ask the question in the first places.

Opistocoelicaudia caudals 6-8, stereopair, Borsuk-Bialynicka (1977:plate 5).

“Orient vertebrae, isolated or in series, so that their neural canals define the cranio-caudal axis” may seem like kind of a ‘duh’ conclusion (if you accept that it’s correct; you may not!), but as discussed up top, often vertebrae from a single individual are oriented inconsistently in descriptive works, and orientation does actually matter for answering some kinds of questions. So regardless of which conclusion we settle on, there is a need to sort out this problem.

That’s where I’m at with my thinking. A lot of this has been percolating in my hindbrain over the last few weeks—I figured out most of this while I was writing this very post. Is it compelling? Am I talking nonsense? Let me know in the comments.

Viewing all 76 articles
Browse latest View live